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Abstract
A theory for the absorption and scattering (sideband generation) of near-infrared
light by undoped quantum wells subjected to intense terahertz radiation and
a quantizing magnetic field is presented. It is based on rigorous stationary
wave functions for Landau levels driven by an alternating-current field. Due
to their characteristic energy structure, the response of Landau levels to the
terahertz radiation diverges at cyclotron resonance. This singularity, absent
in the conventional optical Stark effect of atoms, leads to the disappearance
of both absorption and sideband intensities (terahertz-induced transparency) at
resonance or in the limit of strong terahertz intensity.

1. Introduction

In the last decade, the need for broad-band communication systems has heightened interest in
terahertz electro-optics. Nonlinear optical phenomena, such as THz sideband generation [1–8]
and the Franz–Keldysh effect [9–14], both discovered recently, are expected to play key roles
in the realization of such systems. In a previous publication, I have proposed a perturbation
theory for resonant THz sideband generation (i.e., sum and difference frequency generation
involving one near-infrared photon and multiple THz photons) in undoped semiconductor
quantum wells in strong magnetic fields [15, 16]. The susceptibility obtained, assuming both
the near-infrared (NIR) and THz fields to be small, can successfully explain the experiment.

In the present paper, I extend this theory to the regime of stronger THz fields and discuss
both absorption and sideband generation. (Preliminary results for sideband generation were
reported in references [17] and [18].) The theory treats the THz field nonperturbatively, while
the NIR field is considered as a small perturbation. Both fields are assumed to be switched
on adiabatically, so transient effects are beyond the scope of the present paper. We approach
the problem by examining (1) how the Landau levels (LLs) are dressed by the THz radiation
(optical Stark effect) and (2) how the THz-dressed LLs scatter and absorb the NIR light. These
are discussed separately in sections 2 and 3, respectively. Numerical results are discussed in
section 4, and a summary is given in section 5.
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2. Intraband dynamics of Landau levels driven by terahertz radiation

The system that we consider is an undoped semiconductor multiple quantum well at T = 0
(growth axis ‖ z) driven by intense THz radiation, linearly polarized in the well plane, in a
quantizing magnetic field B = (0, 0, B). The sample is taken to be a thin rectangular slab
with side lengthsLx , Ly , andLz. We assume that the barriers between the wells are high/thick
enough that the wave-function overlap between the wells is negligible. Furthermore, we
only consider the case of small well width where the orbital degeneracy of the heavy and
light valence bands is completely lifted [19]. This allows us to use a single-band parabolic
approximation for both the conduction band (CB) and valence band (VB) (mass mc > 0
and −mv < 0, respectively). Since the NIR light, causing interband transitions, is weak by
assumption, we neglect electron–electron interactions. Electron–hole interactions (exciton
effects) are also negligible if the magnetic energy is much larger than the exciton binding
energy: eB/µc � µe4/2ε2, where µ = (m−1

c + m−1
v )−1, e > 0 is the elementary charge, c

is the light velocity in vacuum, ε is the static dielectric constant, and we set h̄ equal to 1. For
GaAs, this condition is satisfied if B � 1 T. We limit our discussion to this regime.

Disregarding the NIR light for the moment and assuming that the THz field is not so strong
as to induce interband transitions, let us first examine the stationary dynamics of an electron in
the CB driven by the THz field. Writing the THz electric field as ETHz = (ETHz, 0, 0) sinωt
and choosing the vector potential of the magnetic field as A = (0, Bx, 0), the Hamiltonian H
can be written as

H = 1

2mc

(
p2
x + p2

y +
2eB

c
pyx +

e2B2

c2
x2

)
+ eETHzx sinωt (1)

where p = (px, py) is the electron momentum. Before examining the quantum dynamics
of the system, let us look at the classical electron motion. The classical equation of motion
derived from this Hamiltonian has the following stationary solutions:

x = X̃(t) + a cos(ωct + θ) (2a)

y = Ỹ (t) + a sin(ωct + θ) (2b)

with

X̃(t) = X +
eETHz

mc(ω2 − ω2
c )

sin(ωt) (3a)

Ỹ (t) = Y +
eETHz

mc(ω2 − ω2
c )

ωc

ω
[1 − cos(ωt)]. (3b)

Here a and ωc = eB/mcc are the cyclotron radius and frequency, respectively, [X̃(t), Ỹ (t)] is
the cyclotron centre, and θ , X, and Y are constants. Equations (3) show that (X̃, Ỹ ) revolves
along an elliptic orbit with frequency ω. It is to be noted that both the major and minor radii
of the orbit are ∝ETHz/|ω2 − ω2

c |.
Turning to the quantum dynamics, it can be described, in the effective-mass approximation,

by the following Schrödinger equation for the envelope function ψc(x, y, t):

i
∂ψc

∂t
= Hψc. (4)

Let us put

ψc(x, y, t) = L−1/2
y exp[−ieBXy/c + ieETHzXω

−1 cosωt]φc(x −X, t).
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Here X = 2π"2n/Ly , with n being an integer in the range −LxLy/4π"2 < n < LxLy/4π"2

and " = √
c/Be (magnetic length). This reduces the problem to that of a driven harmonic

oscillator:

i
∂φc

∂t
= − 1

2mc

∂2φc

∂x2
+
mc

2
ω2
cx

2φc + eETHzx sin (ωt)φc. (5)

As shown in appendix A, the stationary solutions of equation (5) can be written as

φcn(x, t) = wcn(x − γc) exp

(
−iEcnt + imcγ̇c(x − γc) + i

∫ t

0
Lc(s) ds

)
(6)

where wcn(x) is the nth normalized harmonic oscillator eigenfunction with energy Ecn =
ωc(n + 1/2) (n = 0, 1, 2, . . .), γc(t) = eETHz/mc(ω

2 − ω2
c ) sinωt is a classical trajectory,

Lc(t) = mcγ̇c
2/2 − mcω

2
cγ

2
c − eETHzγc sinωt is the Lagrangian for γc(t), and γ̇c = dγc/dt .

Combining all these, we get the following solutions of equation (4) [20]:

ψcnX(x, y, t) = 1√
Ly

wcn(x −X − γc)e
−iĒcnt−iXy/"2+iGcX (7a)

GcX(xt) =
[
eETHzX

ω
+
eETHz(x −X)ω

ω2 − ω2
c

]
cosωt − e2E2

THz(ω
2 + ω2

c )

8mcω(ω2 − ω2
c )

2
sin 2ωt (7b)

Ēcn = EG +

(
n +

1

2

)
ωc +

e2E2
THz

4mc(ω2 − ω2
c )

(7c)

where n = 0, 1, 2, . . .. Since we hereafter measure electron energy relative to the VB edge,
the band gap EG is included in Ēcn.

It is well known that in the static case (ETHz = 0), the Landau index n and the centre
coordinate X can be chosen as quantum numbers [21]. Equations (7) show that even when
ETHz 
= 0, X = X̃(0) can be used to label stationary wave functions.

The above discussion of the CB electron dynamics can be easily adapted to the VB: we
merely have to replace mc by −mv . The result is

ψvnX(x, y, t) = 1√
Ly

wvn(x −X − γv)e
−iĒvnt−iXy/"2+iGvX (8a)

GvX(xt) =
[
eETHzX

ω
+
eETHz(x −X)ω

ω2 − ω2
v

]
cosωt +

e2E2
THz(ω

2 + ω2
v)

8mvω(ω2 − ω2
v)

2
sin 2ωt (8b)

Ēvn = −
(
n +

1

2

)
ωv − e2E2

THz

4mv(ω2 − ω2
v)

(8c)

where γv(t) = −eETHz/mv(ω
2 − ω2

v) sinωt and ωv = eB/mvc.
It is seen from equations (7) and (8) that ψcnX(xyt) and ψvnX(xyt) have temporal Fourier

components Ēcn + lω and Ēvn + lω, respectively, where l is an integer, i.e., the LLs split into
THz sidebands. Moreover, the second term of Ēcn (or Ēvn) indicates that the THz field induces
a rigid (i.e., independent of n and l) shift of these photon sidebands. This shift changes sign
and diverges at ωc. This rigid shift of all the levels, leaving their separation ωc unchanged, is
quite distinct from the conventional optical Stark effect of atoms [22]. For atoms, it is a good
approximation to single out a few pairs of levels that are nearly resonant with the field. The
field renormalizes the level separations in such a way that no singularity arises. This simple
dressed-atom picture fails for LLs, where the level separation is not affected by the field. The
resonant singularity persists, and the dynamic response of the LLs diverges at resonance. As
we will see, this singularity leads to novel electro-optic effects.
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The stationary wave functions ψcnX(xyt), ψvnX(xyt) are orthonormal and complete:

〈ψκnX(t)|ψκ ′n′X′(t)〉 ≡
∫
ψ∗
κnX(xyt)ψκ ′n′X′(xyt) dx dy = δκκ ′δnn′δXX′ (9a)∑

nX

ψ∗
κnX(xyt)ψκnX(x

′y ′t) = δ(x − x ′)δ(y − y ′) (9b)

where κ = c or v. Without THz radiation, all the VB LLs are occupied and CB LLs are
empty. As the THz field is switched on adiabatically, these states evolve into ψvnX(t) and
ψcnX(t), respectively, so we finally have all the ψcnX(t) occupied and all the ψvnX(t) empty.
Now we switch on the NIR light slowly, inducing transitions between ψvnX(t) and ψcnX(t).
This interband process is discussed in the next section.

3. Absorption and scattering of NIR radiation

For a sinusoidal NIR field ENIR(t) = (E0x, E0y, 0) sin(.t + φ), where φ is the phase diff-
erence between the THz and NIR fields, the Hamiltonian describing its interaction with an
electron can be written as

HNIR(t) = e

m0c
ANIR(t) · p = e(E0 · p)

m0.
cos(.t + φ) (10)

where ANIR is the vector potential for the NIR field and m0 the bare electron mass. Since
the NIR field is weak by assumption, we treat it in the lowest order of perturbation theory. To
discuss interband transitions, we need the full wave functions, including the Bloch parts, instead
of the envelope functions used in the last section. The band-edge (/-point) Bloch functions are
of the form |S〉|↑〉 and |S〉|↓〉 for the CB and −(|X〉+i|Y 〉)|↑〉/√2 and (|X〉− i|Y 〉)|↓〉/√2 for
the VB [23]. Here |S〉 and {|X〉, |Y 〉, |Z〉} are normalized cell-periodic functions transforming
like atomic s and p functions under the tetrahedral group at the / point, and |↑〉 and |↓〉 denote
spin-up and spin-down functions1 of spin 1/2. Writing these Bloch functions as 2cσ (r) and
2vσ (r) with σ = 1 (−1) for spin up (down), the full wave functions can be expressed as

ψ̃κnXσ (x, y, z, t) = ψκnXσ (x, y, t)ζ(z)2κσ (x, y, z). (11)

Here κ = c or v, and we took into account only the ground subband of a well (envelope
function ζ(z)) in the z-direction, neglecting all higher subbands (strong confinement).

Starting from ψ̃vnXσ (x, y, z, t) at t = T (long ago), and turning on the NIR field slowly,
the wave function at t � T , to first order in HNIR , can be written as ψ̃vnXσ + δψ̃nXσ with

δψ̃nXσ (t) = −i
∑
n′,X′

ψ̃cn′X′σ (t) lim
T→−∞

∫ t

T

ds 〈ψ̃cn′X′σ (s)|HNIR(s)|ψ̃vnXσ (s)〉eεs (12)

where eεs (ε > 0) was inserted to ensure slow switching of the NIR field. (ε → 0 corresponds
to the adiabatic limit.) The interband current induced is

j(t) = − Nwe

LxLy

∑
nXσ

〈ψ̃vnXσ (t)|v|δψ̃nXσ (t)〉 + c.c. (13a)

≈ − Nwe

m0LxLy

∑
nXσ

〈ψ̃vnXσ (t)|p|δψ̃nXσ (t)〉 + c.c. (13b)

= − NwBe
2

2πcm0

∑
nσ

〈ψ̃vn(X)σ (t)|p|δψ̃n(X)σ (t)〉 + c.c. (13c)

1 The kets |X〉 and |Y 〉 should not be confused with the cyclotron centre coordinates X and Y .
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where Nw is the number of quantum wells per unit thickness. In equation (13b), we neglected
the small B-dependent part of the velocity operator v. (The same approximation was implicit
in the use of the interaction Hamiltonian equation (10).) Since, as shown in appendix B,
〈ψ̃vnXσ (t)|p|δψ̃nXσ (t)〉 is independent of X, the Xs in the matrix element of equation (13c)
were put in parentheses and the X-summation was carried out explicitly.

Combining equations (10), (12), and (13c), we obtain the α-component (α = x, y) of j

as

jα(t) = iNwBe
3

2πcm2
0.

∑
nn′σβ

E0βQ
∗
nn′σ,α(t)

∫ t

−∞
dt ′ Qnn′σ,β(t

′) cos(.t ′ + φ)eεt
′
+ c.c. (14)

where Qnn′σ,α(t) = 〈ψ̃cn(X)σ (t)|pα|ψ̃vn′(X)σ (t)〉. The explicit form of Qnn′σ,α is obtained in
appendix B:

Qnn′σ,α = 〈2cσ |pα|2vσ 〉ei(Ēcn−Ēvn′ )t
∞ (n−n′)∑
l=−∞

e−ilωtD(l, n, n′) (15)

where D(l, n, n′) is a function of ω, ETHz, and B (see equations (B.5)), and the l-summation
runs over even (odd) integers if n − n′ is even (odd). Using this expression, jα(t) can be
expressed as a sum over sidebands:

jα(t) =
∞∑

l=−∞
(. + 2lω)

∑
β

[
(χ2l)αβe−i(.+2lω)t−iφ + (χ2l)

∗
αβei(.+2lω)t+iφ

]
E0β. (16)

Here the tensors χl are

(χl)αβ = NwBe
3

4π(. + lω)cm2
0.

∞∑
n,n′=0

∞ (n−n′)∑
l′=−∞

[
SαβD(l + l′, n, n′)∗D(l′, n, n′)

.− l′ω + <nn′ + iε

− S∗
αβD(l

′, n, n′)∗D(l + l′, n, n′)

. + (l + l′)ω −<nn′ + iε

]
(17)

where

<nn′ = Ēcn − Ēvn′ Sαβ =
∑
σ=±

〈2cσ |pα|2vσ 〉〈2vσ |pβ |2cσ 〉.

Since . − l′ω, . + (l + l′)ω ≈ EG ≈ <nn′ , the first term on the right-hand side (counter-
rotating-wave term) is much smaller than the second (rotating-wave term) and can safely be
neglected. Equation (17) shows that only even-order sidebands are generated, which is due to
the inversion symmetry of the unperturbed system in the (x, y) plane. Using 〈2vσ |pα|2cσ 〉 =
−iσP/

√
2 for α = x and P/

√
2 for α = y, where P = −i〈X|px |S〉 = −i〈Y |py |S〉 [23], we

get Sαβ = P 2δαβ . Therefore (χl)xx = (χl)yy and (χl)xy = (χl)yx = 0. We shall hereafter
denote the diagonal elements of (χl)αβ simply as χl , the final form of which reads

χl = − P 2NwBe
3

4π(. + lω)cm2
0.

∞∑
n,n′=0

∞ (n−n′)∑
l′=−∞

D(−l′ − l, n, n′)∗D(−l′, n, n′)
.− l′ω −<nn′ + iε

. (18)

χl is resonantly enhanced when . = <nn′ + lω ≡ .nn′l where l is an even (odd) integer when
n − n′ is even (odd). These resonances produce peaks in interband absorption spectra. Note
that the peak positions .nn′l shift with ETHz.

It is to be noted that more than one term under the summation may become simultaneously
resonant. For example, if ω = (ωc + ωv)/2, .nn,−2n are independent of n and so . may be
tuned to all of them. This type of resonance has already been discussed in our perturbation
calculation [15, 16].
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One can readily show that χl is an analogue of the standard susceptibility. For example,
the absorption rate of the NIR light energy per unit volume is

j(t) · ENIR(t) = (Im χ0).E
2
0 (19)

where the overline denotes long-time averaging. Thus, Im χ0 gives the absorption rate of the
NIR radiation, whereas |χl| (l = ±2,±4, . . .) gives the intensity of the lth sideband. As seen
from equation (18), χl is independent of the phase difference φ between the THz and NIR
beams.

4. Numerical results

Equation (18) was evaluated numerically using the standard parameters for GaAs: mc/m0 =
0.067, mv/m0 = 0.11, Nw = 4 × 105 cm−1 (superlattice period = 25 nm), and P =
1.29 × 10−19 g cm s−1. The imaginary part ε in the denominator takes account of relaxation
(interband + intraband) through ε = 1/2τrel where τrel is the phase relaxation time. All the
results that we discuss below are obtained using ε = 1 meV (τrel = 0.3 ps).

Figure 1 presents the B-dependence of Im χ0 calculated for ETHz = 1 (solid line) and
10 kV cm−1 (dashed line), respectively. Hereω = 15 meV, and. is tuned to.000 at each value
of B. The solid line shows an overall increase ∼B. This quasilinear increase results from the
prefactor of equation (18), i.e., LL degeneracy. At a cyclotron resonance (CR) (ω = ωc, ωv),
Im χ0 is seen to drop sharply to 0. This remarkable behaviour becomes more pronounced as
ETHz increases (dashed line): the dip extends over a wider range ofB. This is a nonperturbative
effect, not accounted for by a perturbation treatment of the THz field. To understand this, note
first that in discussing electron–hole recombination, it suffices to consider an electron–hole
pair with the sameX (equation (B.2)). The distanceR between their classical cyclotron centres
is

R =
√

[X̃c(t)− X̃v(t)]2 + [Ỹc(t)− Ỹv(t)]2 ∝ ETHz

|ω − ωc,v| (ω ≈ ωc, ωv) (20)

which diverges at CR, causing the interband transition matrix element to vanish exponentially.
This resonant electron–hole separation (REHS) is a manifestation of the peculiar optical Stark
effect of LLs, where the field-induced dressing of the LLs does not remove the resonant
divergence.

0

0.02

0.04

0.06

5 10 15 20

Im

 B (TESLA)

χ 0
(e

su
)

el. CR

hole CR

0

0.02

0.04

0.06

5 10 15 20

Im

 B (TESLA)

χ 0
(e

su
)

el. CR

hole CR

Figure 1. Calculated Im χ0 versus B for a GaAs multiple quantum well with period 25 nm. The
solid and dashed lines correspond to ETHz = 1 and 10 kV cm−1, respectively. . is tuned to the
.000 resonance at each value of B. The other parameters are ω = 15 meV and ε = 1 meV.
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The REHS has a significant effect on the sidebands as well. Figure 2 plots the B-
dependence of |χn| for various sidebands (n = ±2, ±4) calculated with the same parameters
as for figure 1. While the perturbation calculation [15, 16] displays simple peaks at CR, our
nonperturbative result shows a sharp dip at the centre of each CR peak. These sharp structures,
which also broaden as ETHz increases (dashed line), are also caused by the REHS. Unlike
for the case of absorption (figure 1), the sideband intensity away from the CRs is generally
enhanced by orders of magnitude by the THz field as seen by comparing the solid and dashed
lines. This enhancement is not monotonic as will be discussed later.

5 10 15 20

n=-4

x 40

x 30n=2

x 2000

n=4

0

0.003

0.006

0.009

0.012

0

1 10-5

2 10-5

0

0.002

0.004

0.006

5 10 15 20

x 300

3 10-3

0

2 10-3

1 10-3

n=-2

B       (TESLA)

χ n
  

(e
su

)
|

|

Figure 2. |χ | versus B for various sidebands obtained using the same parameters as for figure 1.
The solid and dashed lines correspond to ETHz = 1 and 10 kV cm−1, respectively.

In addition to the two CR peaks, figure 2 (n = 2 and n = 4) displays a third peak
located at B = 10.9 T. This results from the resonance ω = (ωc + ωv)/2, the mechanism of
which was discussed in the last section. Unlike the CR peaks, this peak (originating from the
resonant denominators in equation (18)) is unaffected by the REHS and has no dip at its centre.
Although equation (18) generally has an infinite number of resonances, only those producing
the ω = (ωc + ωv)/2 peak are dominant at ETHz = 1 kV cm−1 (solid line). With increasing
ETHz, other terms begin to contribute, generating fine subsidiary peaks (dashed line).

The ETHz-dependences of the absorption and sideband intensities are plotted in figures 3
and 4, respectively, for B = 8 T (ωc = 13.81 meV, ωv = 8.28 meV). The solid and dashed
lines denote the results for ω = 15 (large detuning from ωc) and 14.5 meV (small detuning),
respectively. . is set equal to .110 at each value of ETHz. As ETHz increases, all the plots
show the general trend of oscillatory variation followed by eventual exponential drop to 0. The
exponential decay (field-induced transparency) can be explained again by the REHS. The THz
field drives the electron and hole cyclotron centres in different directions, pulling them apart
and reducing their recombination probability. Mathematically, the REHS is represented by

D(l, n, n′) ∝ e−(<2+ω2/2)/8

(equation (B.5b)) where |<|, |/| ∝ ETHz/|ω−ωc,v| near a CR (equations (B.5f ) and (B.5g)).
Thus the threshold field strength Eth at which |χn| decays scales as the smaller of |ω−ωc| and
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0

0.005

0.01

0.015

0.02

0.025

0 5 10 15 20 25
 E(kV/cm)

Im
(e

su
)

χ 0

Figure 3. Calculated Im χ0 versus ETHz for a GaAs multiple quantum well with period 25 nm.
The solid and dashed lines represent results for ω = 15 (large detuning from the electron CR,
ωc = 13.81 meV) and 14.5 meV (small detuning), respectively. The other parameters areB = 8 T,
ε = 1 meV, and . is tuned to the .110 resonance at each value of ETHz.
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Figure 4. |χ | versusETHz for various sidebands obtained using the same parameters as for figure 3.

|ω − ωv|. Thus |χn| survives up to higher ETHz for larger detuning. Also, Eth is independent
of the sideband index n. All these features are clearly seen in figures 3 and 4.

This REHS also explains the oscillatory variation of χ at intermediate ETHz: at a
particular instant, the electron and hole are located at different positions and feel different
THz potentials. The difference between these potentials oscillates in time, making the
recombination photon-assisted. Thus it is no coincidence that figures 3 and 4 resemble the
current–voltage characteristics of photon-assisted tunnelling [24]. Bessel functions describe
the oscillations in both cases (see equation (B.5b)).

In equation (18), . is contained only in the denominators, so the dependence on . of
χn is rather simple. In particular, Im χ0 as a function of . consists of a series of Lorentzian
peaks centred at . = .nn′l . Figure 5 illustrates this for B = 8.22 T (ωc = 14.19 meV) and
ω = 15 meV. For ETHz = 1 kV cm−1 (solid line), the system is still in the low-field regime,
i.e., the peaks occur (from left to right) at . = .000, .110, .220, .330, and .440. As the
field increases, other resonances gain intensity and the assignment of a peak to a single (nn′l)
resonance loses its meaning. For ETHz = 10 kV cm−1 (dashed line), each of the peaks is
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Figure 5. Calculated Im χ0 versus . for ETHz = 1 (solid line) and 10 kV cm−1 (dashed line). The
other parameters are ω = 15 meV and B = 8.22 T.

actually a superposition of five to ten resonances (. = .nn′l with different values of (nn′l)).
Since more resonance channels become available as . increases, the overall peak density is
greater in the large-. region. A close examination of the origins of the peaks has revealed that
resonances with n � n′ are dominant. This may be understood from the fact that ω ≈ ωc in
this example, and, therefore, the CB electrons can be easily excited to higher LLs.

5. Summary

An analytic, nonperturbative theory of light absorption and scattering (sideband generation)
by Landau-quantized electrons and holes driven by intense THz radiation has been developed.
The result underlines the importance of resonant electron–hole separation near CR which
causes the sideband intensity to oscillate as a function ofETHz and decay exponentially to zero
as ETHz → ∞. The CR peaks exhibit a dip at their centres, which broaden as ETHz → ∞.

In real systems, intra-LL relaxation, which was neglected in the present work, tends to
suppress the REHS. In my previous publication [18], I made a crude estimation of its influence
by introducing a phenomenological relaxation time. The result indicated that the predicted
REHS-induced effects are still observable as long as the relaxation time is longer than ≈0.1 ps.
At present, we still lack detailed information about the dephasing time in nanostructures driven
by a strong THz field. We look forward to future efforts in this direction.
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Appendix A. Driven harmonic oscillator wave functions

To obtain the stationary solutions of the Schrödinger equation:

iψ̇ = Hψ (A.1a)

H = − 1

2m

∂2

∂x2
+

1

2
mω2

cx
2 + eEx sinωt (A.1b)

we introduce a unitary transformation:

f (xt) = Uψ(xt) (A.2a)
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U = e−imγ̇ xeiγp. (A.2b)

Here

γ (t) = eE

m(ω2 − ω2
c )

sin(ωt) (A.3)

is a solution of the classical equation of motion:

mγ̈ = −mω2
cγ − eE sin(ωt). (A.4)

The new function f satisfies [U(i ∂/∂t − H)U−1]f = 0, or, upon carrying out the unitary
transformation and using equation (A.4),

iḟ = − 1

2m

∂2f

∂x2
+

1

2
mω2

cx
2f − L(t)f (A.5a)

L(t) = m

2
γ̇ 2 − 1

2
mω2

0γ
2 − eEγ sinωt. (A.5b)

(L(t) is the Lagrangian for the classical trajectory γ (t).) The solutions of equations (A.5) are

fn(xt) = wn(x)e
−iEntei

∫ t

0 L(s) ds (A.6)

where

wn(x) = 1√
2nn!

(
mωc

π

)1/4

e−mωcx2/2Hn(
√
mωcx) (A.7)

is a harmonic oscillator eigenfunction and En = (1/2 +n)ωc its energy. (Hn(x) is the Hermite
polynomial of order n.) From this we obtain

ψn(x, t) = U−1fn(xt) = wn(x − γ )e−iEnteimγ̇ (x−γ )ei
∫ t

0 L(s) ds . (A.8)

Appendix B. Calculation of Qnn′σ,α

To calculate 〈ψ̃cnXσ (t)|pα|ψ̃vn′X′σ (t)〉, we insert equations (7) and (8) into the definition and
use the identity

1

Ly

∫ Ly/2

−Ly/2
dy ei(X−X′)y/"2 = δXX′ (B.1)

to obtain

〈ψ̃cnXσ (t)|pα|ψ̃vn′X′σ (t)〉 = δXX′Qnn′σ,α (B.2)

with

Qnn′σ,α = 〈2cσ |pα|2vσ 〉ei(Ēcn−Ēvn′ )tFnn′(t) (B.3a)

Fnn′(t) =
∫ ∞

−∞
dx wcn(x − γc)wvn′(x − γv)e

−iGcX(xt)+iGvX(xt). (B.3b)

Performing the x-integration and using

eia sin 2ωt+b cos 2ωt =
∞∑

l=−∞
Jl

(√
a2 − b2

)(
a + b√
a2 − b2

)l

e2ilωt (B.4)



Nonperturbative THz electro-optics of semiconductor quantum wells in strong magnetic fields 10989

where Jl(z) is the Bessel function of order l, we finally obtain

Qnn′σ,α = 〈2cσ |pα|2vσ 〉ei(Ēcn−Ēvn′ )t
∞ (n−n′)∑
l=−∞

e−ilωtD(l, n, n′) (B.5a)

D(l, n, n′) = e−(<2+ω2/2)/8
n1∑

M=−n2

A1(n, n
′,M)JM−(l+n1−n2)/2

(√
A2

2 − A2
3

)

×
(

A2 + A3√
A2

2 − A2
3

)M−(l+n1−n2)/2

(B.5b)

A1(n, n
′,M) =

√
2n2n2!

2n1n1!

n2∑
k3=max(−M,0,M−n1+n2)

k3∑
k2=0

n1−n2∑
k1=0

(
n1

n2 − k3

)(
k3

k2

)(
n1 − n2

k1

)

× (ω/)k1+2k2<n1−n2−k1−2k2+2k3 [σn′n]n1−n2−k1

k3!2n1−n2+3k3 in1−n2−2k1−2k2

× η(k3 + M,n1 − n2 − k1 − 2k2 + 2k3, k1 + 2k2) (B.5c)

A2 = e2E2
THz[mc(ω

2 + ω2
c ) + mv(ω

2 + ω2
c )]

8mcmvω(ω2 − ω2
c )(ω

2 − ω2
v)

(B.5d)

A3 = e2E2
THz"

2(ωc + ωv)
2

8(ω2 − ω2
c )(ω

2 − ω2
v)

(B.5e)

/ = eETHz"

(
1

ω2 − ω2
v

− 1

ω2 − ω2
c

)
(B.5f)

< = eETHz

"

(
1

mv(ω2 − ω2
v)

− 1

mc(ω2 − ω2
c )

)
(B.5g)

η(k1, k2, k3) =
min(k1,k2)∑

l=max(0,k1−k3)

(−1)l
(
k2

l

)(
k3

k1 − l

)
(B.5h)

where n1 = max (n, n′), n2 = min (n, n′), and σn′n = 1 if n′ � n and −1 otherwise.
Furthermore, in equation (B.5a), the l-summation runs over even (odd) integers if (n− n′) is
even (odd), and Ēcn and Ēvn are defined by equations (7c) and (8c), respectively.
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[1] Kono J, Černe J, Inoshita T, Sherwin M S, Sundaram M and Gossard A C 1996 Proc. 23rd Int. Conf. on the
Physics of Semiconductors ed M Scheffler and R Zimmermann (Singapore: World Scientific) p 1911
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